Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Scandinavian Journal of Statistics ; 50(2):411-451, 2023.
Article in English | Academic Search Complete | ID: covidwho-2323963

ABSTRACT

Estimating location is a central problem in functional data analysis, yet most current estimation procedures either unrealistically assume completely observed trajectories or lack robustness with respect to the many kinds of anomalies one can encounter in the functional setting. To remedy these deficiencies we introduce the first class of optimal robust location estimators based on discretely sampled functional data. The proposed method is based on M‐type smoothing spline estimation with repeated measurements and is suitable for both commonly and independently observed trajectories that are subject to measurement error. We show that under suitable assumptions the proposed family of estimators is minimax rate optimal both for commonly and independently observed trajectories and we illustrate its highly competitive performance and practical usefulness in a Monte‐Carlo study and a real‐data example involving recent Covid‐19 data. [ FROM AUTHOR] Copyright of Scandinavian Journal of Statistics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Sensors (Basel) ; 22(16)2022 Aug 16.
Article in English | MEDLINE | ID: covidwho-2024041

ABSTRACT

With the vigorous development of ubiquitous sensing technology, an increasing number of scholars pay attention to non-contact vital signs (e.g., Respiration Rate (RR) and Heart Rate (HR)) detection for physical health. Since Impulse Radio Ultra-Wide Band (IR-UWB) technology has good characteristics, such as non-invasive, high penetration, accurate ranging, low power, and low cost, it makes the technology more suitable for non-contact vital signs detection. Therefore, a non-contact multi-human vital signs detection method based on IR-UWB radar is proposed in this paper. By using this technique, the realm of multi-target detection is opened up to even more targets for subjects than the more conventional single target. We used an optimized algorithm CIR-SS based on the channel impulse response (CIR) smoothing spline method to solve the problem that existing algorithms cannot effectively separate and extract respiratory and heartbeat signals. Also in our study, the effectiveness of the algorithm was analyzed using the Bland-Altman consistency analysis statistical method with the algorithm's respiratory and heart rate estimation errors of 5.14% and 4.87%, respectively, indicating a high accuracy and precision. The experimental results showed that our proposed method provides a highly accurate, easy-to-implement, and highly robust solution in the field of non-contact multi-person vital signs detection.


Subject(s)
Radar , Signal Processing, Computer-Assisted , Algorithms , Heart Rate , Humans , Respiratory Rate , Vital Signs
3.
Scandinavian Journal of Statistics ; : No Pagination Specified, 2022.
Article in English | APA PsycInfo | ID: covidwho-1774897

ABSTRACT

Estimating location is a central problem in functional data analysis, yet most current estimation procedures either unrealistically assume completely observed trajectories or lack robustness with respect to the many kinds of anomalies one can encounter in the functional setting. To remedy these deficiencies we introduce the first class of optimal robust location estimators based on discretely sampled functional data. The proposed method is based on M-type smoothing spline estimation with repeated measurements and is suitable for both commonly and independently observed trajectories that are subject to measurement error. We show that under suitable assumptions the proposed family of estimators is minimax rate optimal both for commonly and independently observed trajectories and we illustrate its highly competitive performance and practical usefulness in a Monte-Carlo study and a real-data example involving recent Covid-19 data. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

SELECTION OF CITATIONS
SEARCH DETAIL